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The evolutions of the planar and axisymmetric vortex sheets generated by the
impulsive motion of a cylinder and a sphere, respectively, are compared numerically.
The numerical method addresses difficulties that occur in the axisymmetric case
near the axis of symmetry. The planar vortex sheet is known to develop a branch
point singularity in finite time. Comparison of the planar and axisymmetric solutions
indicates that the axisymmetric sheet develops a branch point singularity as well, and
that it is of the same ordqy as the planar singularity. The value pfis consistent
with 3/2.  © 2001 Academic Press

Key Wordsvortex sheet; singularity formation; axisymmetric vortex sheets.

1. INTRODUCTION

Consider a cylinder immersed in inviscid fluid which is given an impulse in a directic
normal to itself. The resulting potential flow is induced by a planar vortex sheet in place
the cylinder. Similarly, the potential flow past an impulsively started sphere is induced
an axisymmetric vortex sheet in place of the sphere. This paper studies the evolution of
planar and axisymmetric vortex sheets under their self-induced velocity, as if the cylin
and sphere were dissolved and the fluid within them allowed to move with the flow. The
is no surface tension present.

Planar vortex sheets with analytic initial conditions are known to lose their analytici
in finite time. This was first shown by Moore [20] for a periodical perturbation of a fla
vortex sheet. Using approximate evolution equations for the Fourier coefficients, he fot
that the vortex sheet coordinates, parametrized by the circulBtidavelop a branch point
singularity proportional td"%/2. The singularity formation was confirmed by Meiron, Baker,
and Orszag [19] using Taylor series expansions, and by Krasny [17] and Shelley [28] us
the point vortex approximation. A/2 branch point singularity was also found in planar
Boussinesq flow (Pugh [25]), and in Rayleigh Taylor flow (Baker, Caflisch and Siegel [2
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Recent analytical work suggests that Moore’s 3/2 singularity is generic for planar vor
sheets (Caflisckt al.[7], Cowley, Baker, and Tanveer [12]).

Much less is known about fully 3D or axisymmetric vortex sheets. Ishihara and Kane
[15, 16] and Brady and Pullin [6] considered certain 3D perturbations of a flat vortex shi
and found analytical evidence of singularity formation based on Moore’s analysis [6, 1
as well as numerical evidence [16]. For axisymmetric vortex sheets, the numerical res
of Pugh [25], Nitsche [23], and Nie and Baker [22] indicate the formation of a singularit
Hu [14] recently showed at least formally that 3D and planar vortex sheets share the s
type of singularity. The goal of the present paper is to compare planar and axisymme
singularity formation numerically.

The numerical method used to compute the vortex sheet evolution is based on €
uating the singular integrals that represent the vortex sheet velocity. In the planar ¢
these integrals are computed accurately with either van de Vooren’s [31] approximat
or the alternate point vortex approximation (Baker [1], Shelley [28]), as has previou:
been done by Rottman and Stansby [27]. In the axisymmetric case, a complication oc
that is not present in the planar case. For points near the axis of symmetry, the integr:
have large variations which make it difficult to evaluate the velocity accurately (Bak
Meiron, and Orszag [3]). De Bernadinis and Moore [5] computed the axisymmetric v
locity using a third order accurate quadrature rule and showed that there is a large
of accuracy as the axis is approached, even though the vortex sheet is smooth. Nit
[24] showed that this loss of accuracy occurs for standard quadrature rules of arbit
ily high order. At any given point on the vortex sheet, the discretization error converg
at the correct rate, but it does not converge uniformly. The maximum error is always
size O(h), whereh is the mesh size. The difficulty is caused by the behaviour of cc
efficients multiplying the logarithmic terms in the axisymmetric integrands, as well :
derivatives at the endpoints. Their values are shown to become unbounded as the a
approached.

The loss of accuracy makes it difficult to resolve the axisymmetric singularity formatio
Pugh [25] reduced the size of the errors near the axis using asymptotic expansions o
integrals, but found that for computationally feasible mesh sizes the error remainedtoo la
Nie and Baker [22] used local mesh refinement to more accurately evaluate the integ
For each integral, they introduced new mesh points, based on an interpolant of the vc
sheet, and were able to sufficiently reduce the error near the axis.

Here we apply a method proposed by Nitsche [24] to address the difficulty in the axisy
metric case. It is based on an analytical approximation of the integrand whose integral
be accurately precomputed for all times. By subtracting the approximation, a quadrat
rule is obtained that converges uniformly over the vortex sheet at no additional cost, |
removes the loss of accuracy near the axis. This method has been used by Cenicero
Si [11] to resolve axisymmetric Darcian flow. Below, we describe a fifth order accure
extension of the method. The axisymmetric simulations are then compared to the pl
ones. The main result is evidence that the planar and axisymmetric flows behave alr
identically near a critical time, indicating that the axisymmetric sheet develops a brar
point singularity as well and that it is of the same type as the planar one.

The paper is organized as follows. Section 2 presents the initial conditions and the ¢
erning equations. Section 3 describes the numerical method. It illustrates the differer
between the planar and the axisymmetric integrands responsible for the axisymmetric c
plication and describes the quadrature rules used in each case. Section 4 presents the



210 MONIKA NITSCHE

and axisymmetric simulations and compares the results. The results are summarize
Section 5.

2. PROBLEM FORMULATION

2.1. Initial Conditions

Let (X, y, 2) be a Cartesian coordinate system such that the initial cylinder and sph
are centered at the origin and the z-axis is the axis of the cylinder (Fig. 1a, b). The ini
radius isa and the initial velocity inside the cylinder/spherdli 0, 0). The initial velocity
outside the cylinder/sphere is determined by the stream function in the xppetane,

a?u . alu .
Yaa(r, 0) = ——sing wsd(r,0)=75m29, 0<f<m, r>a (2.1)

(Batchelor [4], Sections 6.6, 6.8). Hare are polar coordinates, and the subscriptsad
3d refer to the planar and axisymmetric case respectively.

The evolving vortex sheets are described by their cross section with thexippplane
and by the circulation distribution. The cross section (Fig. 1c) is a cxie t), y(«, t))
parametrized by a Lagrangian parameteiThe circulationl" («) is given bydI'/ds =
o (s, t), wheres is arclength, and is the vortex sheet strength, that is, the jump in the
tangential velocity across the sheet. From (2.1) it follows that the initial velocity jump is

. 3, .
024(S, 0) = 2U sinf, o034(s, 0) = éU sind, s=afh. (2.2)
We chooser to equal the anglé at time zero andi’ («) to be the total circulation between
(X(e, 1), y(, 1)) and the foremost point on the sheEtw) = OS(‘”) o (s,0)ds. The total
circulation in the uppex-y plane,I't = I'(n), is

I'tog =4Ua, I'tag =3Ua. (2.3)

The flow is nondimensionalized with respect to the initial radi@nd the total circulation

(a) (b) (©)
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FIG. 1. Sketch illustrating the coordinate system and initial vortex sheets (a, b) and their cross section v
the uppex—y plane (c).
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['r. With this choice, the initial vortex sheet is given by
X(a, 0) = cosa, Y(a,0) =sine, I'(a) =(1—cosa)/2, 0<a <. (2.4)

The corresponding nondimensional initial velocitydigy = 1/4 andUzq = 1/3.

2.2. Evolution Equation

The vortex sheetéx (o, t), y(a, t)) with circulationT(«) are a superposition of vortex
elements with strengtil” = I'’(«) da. These elements are counterrotating pairs of vorte
lines in the planar case, and circular vortex filaments in the axisymmetric case. The stri
function at(x, y) induced by an element &%, ) of unit strength is

X =%2+(y-9?

’ , 2.5a
Vad(X, Y, X, §) = i =+ (v + 9)2 (2.5a)
i s do
yy co
. 2.5b
Vad(X, Y, X, §) = s / (X — %)2 + y2 + §2 — 2y cos)L/2 (2.5b)
0

The corresponding velocity &, y) induced by an element &, §) is

a a 10 10
(U2d, U2d) = ( ;/IZd s T de > ) (u3da U3d) = (_ﬂ7 - Ip3d ) ’ (26)
y aX

and the total velocity induced by the vortex sheets is obtained by superposition,
(U, V)(X,y) = % (U, v)(X, Y, X(a, t), Y(o, )M () dor. (2.7)
0

For points(x, y) on the vortex sheets, the integrals in (2.7) are singular and are evaluate!
the principal value sense, which effectively assigns to the sheets the average of the velot
on either side of them. The sheets evolve under self-induction,

d d
d—f(a, t) = ux(@, 1), y(e, ), d—i’(a, 1) = v(x(e. 1), y(e, 1), 2.8)

with the given initial conditions (2.4).

3. NUMERICAL METHOD

The vortex sheets are discretized by+ 1 vortex elements afx;, y;) = (X(«;j, t),
y(aj, 1)), j =0,..., N, corresponding to a uniform meshdne; = jh, h=n/N. The
velocity of thejth element is

b T

dx; dy;

d—)f[] :fG“(a,aj,t)dot, d—)? :fG”(a,aj,t)da, (3.1)
0 0

whereG", GV are the integrands in (2.7) evaluatedwaty) = (X;, y;) (see [24] for the ax-

isymmetric case). The numerical method consists of approximating the integ@&s &
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in (3.1) by a quadrature rule, integrating the resulting system of ordinary differential eqt
tions by the fourth order Runge—Kutta scheme, and applying a Fourier filter. The m.
portion of this section discusses the quadrature rules to be used. It illustrates the differe
between the planar and the axisymmetric case, and describes the remedy for the diffic
occuring in the axisymmetric one.

3.1. Planar vs Axisymmetric Case

The planar and axisymmetric integrar@have expansions i@ — «; of the form

~ e 1ot
Gad(a, aj, 1) = Gau(e, aj, t) + M
~ C 1 (it
Gad(a, aj, t) = Gag(a, @j, 1) + C-1:(®), b
[e.¢]
+ ) ceaal@j, (e — ) logla — ;] (3.2)

k=0

HereG is smooth as long as the vortex sheet is smooth. Sidi and Israeli [29] derive quadral
rules based on a uniform mesh that integrate singular functions of the form (3.2) to arbitr
accuracy. In the planar case, their simplest quadrature rule turns out to be exponent
accurate, and equals the one used by van de Vooren [31]. In the axisymmetric case
will see that all of their quadrature rules lose accuracy whgeis near the axis and have
maximum errors of siz€ (h), making it difficult to resolve the axisymmetric vortex sheet
motion. As explained below, the reason for the complication in the axisymmetric case
not the presence of the additional logarithmic terms given in (3.2), but the behaviour of
coefficientsc, and of derivatives o6 on the axis, as a function of;.

The quadrature rules given by Sidi and Israeli [29] for integrals of the form (3.1), (3..
are

fe(a, aj. ) da ~ Q[Glp - (3.3)
0

where

, . h
QIGllhyy =h>_ Glak. aj.t) + hG(aj. ). t) + Co(aj,t)hlogg

kA
2m 2m+1

+3 uk(eg O 37§ [GY (. ), ) —GR (0, o5 ] (3.4)
kke:vzen kk:éd

Herem > 0, with larger values ofm corresponding to higher order approximations. For
m = 0, it is implied that the fourth term in (3.4) is absent. The prime on the summatic
indicates that the first and last summands are weightedhyrhe derivative&® are taken
with respect to the variable of integratian and the constants, ji are defined in terms
of the Riemann zeta function. The first term in (3.4) is the trapezoid rule approximati
of a principal value integral, as used in the point vortex approximation. The second te
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is the correction given by van de Vooren [31]. The third and fourth terms account for t
logarithmic terms in (3.2). The last term corresponds to the Euler—MacLaurin series for
error in the trapezoid rule [13], Section 7.4). The approximation error is

b

2n+2
E[Glfy.n(ej. 1) = fe(a, ). t)do — Q[Glp ,y = Z wCk(j, Hh
0 k=2m+2

k even
2n+3
+ > n[G¥ @ ). t) = G¥(0, ), )] Tt + Oh™9) (3.5)

k=2m+3
k odd

for any integem > m.

Consider the quadrature rule (3.4) with= 0 and the associated approximation errot
(3.5). In the planar case, the logarithmic terms are absewf,g0= 0 fork > 0. One can
also show that the planar integrarﬂsd have a smooth extension across the axis that i
even, so that all odd derivativi vanlsh at the endpoints, = 0, 7. Thus, (3.5) shows
that in the planar case, the quadrature rule wiith= O is exponentially accurate. This is
the approximation used by van de Vooren [31]. The alternate point vortex approximat
introduced by Baker [1] and used by Shelley [28] is another exponentially accurate appre
mation which is more efficient and eliminates the need to compute the vafiepfa;, t).

For this paper we computed the planar flow using both of these methods and found tha
results from the two methods are indistinguishable.

Now consider the quadrature rule with= 0 in the axisymmetric case. The axisymmetric
integrandGsy contains the logarithmic termg sy # 0 for allk > 0. Furthermore, one can
show thatG3y4 has a smooth extension across the axis that is odd instead of even, and th:
odd derivativessgfj except for the first one are nonzero at the endpoints,0, 7. Thus,
(3.5) shows that in the axisymmetric case, the quadrature rulemvith0 is O(h®). This
is the quadrature rule derived by de Bernadinis and Moore [5].

De Bernadinis and Moore [5], however, observed that their quadrature rule loses m
accuracy near the axis. It turns out that while the approximation error (3.5) converge:
the correct rate pointwise, it does not converge uniformlgjnand that the maximum
error is O(h) instead ofO(h®). Nitsche [24] showed that the problem arises because tt
coefficientscy aq anngg become unbounded as — O,

1
j

Ciaalj, t) ~

(k) U(O aj,t) ~ (3.6b)

Rl e

(k) v
, 0,aj,t) ~ —.
( J ) a;(,l
Similar behaviour occurs ag — 7. For a fixed mesh, (3.6) shows that the values.afi
anngg are largest whefj = 1, orej = @1 = h, and

1 1
Cll<j,3d(0‘la t) ~ he’ Ckv,gd(al, t) ~ Prag (3.7a)

1 v
a0 ar t) ~ 1o GSY" (O t) ~ (3.7b)

hk—1°
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Substituting (3.7) into (3.5) thus shows that the maximum errors in the integratiG,of
andG}, occur whenj = 1 and are of siz® (h) andO(h?), respectively. This is true for any
value ofm. That is, no matter how accurate a quadrature rule (3.4) is used, the maxim
errors converge to first and second order only.

In summary, the fact that unlike the planar integrand, the axisymmetric one conta
logarithmic terms and is odd across the axis and not even, accounts for the fact that
axisymmetric quadrature i©®(h?™*3) and not exponentially accurate as the planar one
This does not present a problem, simoecan be chosen to be as large as desired. Th
complication in the axisymmetric case is due to the unboundedness given by (3.6), wt
accounts for the fact that the maximum error is of si¥@), independently ofn.

3.2. Corrected Axisymmetric Quadrature Rule

Figure 2(a, b) illustrates the loss of accuracy of the axisymmetric quadrature rule (¢
with m = 1, which isO(h%). (Here, we need the valugs = —1/12,y3 = 1/720, ands, =
—0.06089691411678654156.) The figure plots the discretization egroe,) in the initial
axisymmetric velocityf GYy(e, j, 0) da, f G3y(, @j, 0) der, computed withh = 7 /N
andN = 50, 100, 200, 400, 800. The figure shows that for fixgdhe error converges at
the correct rate, but that the approximation loses accuracy near the axis. As discussec
maximum errors occur at one gridpoint from the axis and decay@®s in Fig. 2(a), and
asO(h?) in Fig. 2(b). Note that the large loss of accuracy near the axis occurs even thot
the vortex sheet is perfectly smooth there.

Figure 2(c) plots the magnitude of the Fourier coefficiéats the complex errog, + ie,.
Because of the large values &f, e, near the axis, the discretization error contains higt
wavenumber modes of large amplitude. An analysis of the data indicates that the mc
&,y decay asO(h?). In time, these high wavenumber modes grow due to the Kelvin
Helmholtz instability of the vortex sheet. A Fourier filter (Krasny [17]), originally used tc
control the growth of roundoff error, can be used to control the growth of the discretizati
error. However, the level at which such a filter would have to be applied introduces glol
O(h?) errors, which makes it prohibitively expensive to resolve the axisymmetric singulari
formation.

It is therefore not practical to use the quadrature rule (3.4) for the axisymmetric ca
Nie and Baker [22] addressed the problem using local mesh refinement to more accure
compute the integrals describing the vortex sheet velocity. At each timestep, they use
interpolant of the vortex sheet to introduce as many new quadrature points as needed st
the discretization error is uniformly small. They also use a quadrature rule that integre
logarithmic terms accurately, thereby minimizing the required number of inserted poin
The resulting approximation is as accurate as the interpolant, and the discretization err
smooth.

Here, we take the approach developed by Nitsche [24], based on an analytical appr
mation B of the integrands near the axis. The approximation is chosen such that

() B has a self-similar form that is essentially time independent, and
(i) G — B does not have the problematic property (3.650f

As a result of (i), the integral oB can be accurately precomputed. As a result of (ii),
the integration ofG — B does not lose accuracy near the axis. The method consists
precomputing the integral @ and integratinds — B instead ofG at each timestep, at no



SINGULARITY FORMATION 215

-5

(a) S

~15 A

W
Ll JJ

107
0 Qi b4
107
()
10-1\7
le,l
10-15
10"
0 o T
10-5 T
Ui
107" A |
A VAV
107
10 ) L
-1 0 1 -1 0 1
KN k/N
FIG. 2. Discretization error in the initial axisymmetric velocity @, y;), j =0, ..., N, computed with

N = 50, 100 200, 400, 800. The left column shows the results using @@?®) quadrature (3.4) witm = 1. The
right column shows the results using the corrected quadrature (3.12). (a,d) Absolufe éuiry;, (b,e) absolute
errorle,| vs.«j, (c,f) Fourier coefficient$| of the complex errog, + ie, vs.k.
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additional computational cost. In this paper we us®an®) version of the method, which is
an extension of the version presented in [24]. The description below is meant to summa
the basic ideas and present a slightly simpler implementation than the one given in [24

The method requires approximatioB$ and B" of G near the left and right endpoints,
o, o ~ 0 ande, o ~ 7. One can show that far, «j = 0,

GY(a, aj, 1) ~ B*'®(q, a,,t)_bo(t)B()( )—i—aZZbk(t)Bk( )—I—O(a of).

G'(a, aJ,t)wB”'e(a aJ,t)—a,b”(t)BO( >+a3Zbk(t)Bk( )+O(a Ol)
aj o

k=1
(3.8)

with coefficientsh,"® and functionsB,"" as given in [24]. Note that since the functions
B’ are time independent, their integrals can be precomputed to desired accuracy. Thu
numerically integrat& — B'® instead ofG, over some domain containing the lower bound
a = 0. It will be convenient to choose different upper bounds for the integratid arfid

of B'®. We approximate

ajlL

fe doe = fe do — %B'eda +%B'eda ~ QIGI . — QIB T, 1] +% B* da

= Q[G][O,n] + Eq[B' ][o,aj AL (3.9)

whereQ is the fifth order approximation (3.4) wittm = 1. The errorEQ[B""]{‘o,O,J isa
correction to the quadrature rul@ Here,L has to be large enough so that§gL] includes
the interval where B approximates G well; we chodse- 100. The upper bound;L is
chosen so that the correction can be precomputed conveniently. By substituting (3.8) i

ajL

EQ[B I,y = % B“(a, aj, t) do — Q[B*Ify 1 (3.10)
0

and making the change of variables= o/« j, An = Aa/aj = 1/j, the correctiorEg[ B*]
can be rewritten as

e 1 1/j
EQ[B"*Ijb.¢,1) = P51 Eq[Bg] (fJL] + “32 b (D Eq| Bk][({_]L] (3.11a)

EQIB" I} .,y = 2By (D Eq[BY] +a4z by Eq[BY] .  (3.11b)

In this form, the numberEQ[Bk][l()/fL] are independent df as well ast and can be con-
veniently precomputed for all mesh sizes to desired accuracy. Only the coeffibignts
which depend on derivatives &f«, t), y(a,t), andI'(«) at the endpointt = 0, have to
be computed at each timestep. Equation (3.11) also shows that the maximum correct
occur whenj = 1 and are of siz®(h) andO(h?), respectively.
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The correctioan[B"e]{‘oﬂi (7 in (3.9) remove the large errors of the quadratQreear
the left endpointy; = 0. A similar correction can be found near the right endpeint= .
The globally uniformO(h®) approximation is

T

fG da =~ Q[G] + wl(aj)E[Ble]FO’aj g+ w2(ai)E[Bri]Fn—aiL,n]’ (3.12)
0

where the weightsy; andw, are positive, add up to one, vanish at one or the other en
point sufficiently fast, and are smooth and periodic. We chagse sin'(«;)/(sin(«}) +
cos(a;)) andw, = cos(a;)/(sin'(e}) + cod(«;)). Figures 2 (d, e) plot the error in the
initial velocity of the axisymmetric vortex sheet computed with the corrected quadratt
rule (3.12). As the figures show, the large errors near the axis have been removed, an
error converges uniformly a®(h®).

This concludes the description of the corrected unifor@®) quadrature rule for the
axisymmetric case. A final comment relates to the Fourier filtering scheme used. Figure
plots the magnitude of the Fourier coefficieBtsof the complex erroe, + ie,. The high
wavenumber modes have significantly smaller magnitude than in Fig. 2(c), and car
shown to decay a®(h®). However, the high modes of the discretization error have nc
been eliminated and grow under the Kelvin—Helmholtz instability of the sheet. To preve
the growth of these modes they are removed using Krasny’s Fourier filter: All modes in
vortex sheet position below a given filter lewehre set to zero at each timestep. The filte
level needs to be at least as large as the size of the high modes in the discretization
in the velocity (Fig. 2f) times the timesteft. The computations in the next section are
performed withN = 100, 200 400 and 00002 < At < 0.005, allowing for filter levels as
small ast = 107!, with | = 20.

Notice that this is a difference between the current method and the one based on r
refinement described by Nie and Baker [22]. In their method, the error is forced to
uniform across the axis and is thereby smooth, allowing for arbitrarily small filter levels.
the present case, the filter leweis reduced by simultaneously increasiigHowever, this
is not a problem since for convergence itis requiredthat oo andr — 0 simultaneously
[9]. The accuracy of the current method is expected to be comparable to that of Nie
Baker’s [22] method.

Machine precision is chosen so that it lies below the applied filter level. The computatic
are performed with = 14, 17, 20. The ones with = 14 are performed in double machine
precision; the ones with= 17, 20 are performed in quadruple machine precision. Thi
planar computations are performed with the same filter level as the axisymmetric ones

4. NUMERICAL RESULTS

This section presents the computed results for the planar and axisymmetric vortex s
evolution. As discussed in the previous section, the planar results were computed
both van de Vooren’s method [31] and the alternate point vortex approximation [28]. T
axisymmetric results were computed with the corrected quadrature rule (3.12).
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1.3 — t=1.0 t=1.5 t=2.0 1=2.330
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FIG. 3. Computed solution at the indicated times, ushhg= 200,| = 14. (a) Planar. (b) Axisymmetric.

4.1. Evolution of Vortex Sheet and Curvature

Figure 3 plots the computed planar and axisymmetric vortex sligétst), y(«, t)),
0 < a < m, at the indicated times, using = 200 and filter levelr = 10~ with | = 14.
For clarity, the symmetric image correspondingte < « < 0 is also plotted. Each sheet
moves in the direction of the given impulse and changes shape. The front vorticity cau
vortex elements in the rear to decrease in radius, while the rear vorticity causes vo
elements in the front to increase in radius. Since elements with smaller radii travel fas
the rear elements move towards the front ones and the shape of the vortex sheets bec
narrower. The self-induced velocities are larger in the axisymmetric case: The rear
proaches the front faster, causing the axisymmetric sheet to become narrower than the p
one.

The vortex sheet curvature in tiey plane is defined as

Xayaot - Xaotyoz

. 4.1
(x2+y2)¥? @

k(a, 1) =

Initially, «(«, 0) = 1 for all «. As the sheet becomes narrower and the rear travels towar
the front, the curvature in the rear decreases and becomes negative shortlyt befdre
while it remains positive over the remainder of the sheet. At the point where the curvat
changes sign it soon blows up in magnitude. The maximal curvature increases to va
bigger than 1000 in a timeframe which is only a fraction of the total time evolution, giving
strong indication of the formation of a finite time singularity. This is illustrated in Fig. 4(a
which plots the inverse of the maximal curvatug, as a function of time. In both the
planar and the axisymmetric cases, the inverse maximal curvature decreases slowly
approximatelyt = 2.30 (planar) and = 2.16 (axisymmetric), when it suddenly decreases
rapidly and appearsto approach zeroinfinite time. The transition from slow to rapid decre
is sharper in the axisymmetric case. The cause for such a sharp transition region rern
unexplained.
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2.3 2.32 2.34 2.36 2.38 24 2.16 2.18 2.2 2.22 2.24 2.26
t t

FIG. 4. Evolution of I/kmax(t), wherexmay is the maximal curvature at tinteParts (b,c) are close-ups of Part
(a). The solid lines are computed with fixdtl= 400 and varyind = 14, 17, 20; the dashed lines are computed
with fixed| = 14 and varying\ = 100, 200. BothN andl increase from right to left.

Figures 4(b, c) are close-ups of Fig. 4(a). The solid curves shown are computed with fi
N = 400 and varyind = 14, 17, 20. The dashed curves are computed with fixedl4
and varyingN = 100, 200. BothN andl increase from right to left, with the most resolved
result furthest to the left. The kinks in the curves are an artifact of the discretization cau
by the fact that the singularity does not occur at a grid point. The figures show that near
apparent singularity formation, the computed solution has not converged in the parame
N andl, and that both parameters need to be increased to better resolve the singularity
gain information about it. For example, the critical time of singularity formation, given b
the time when the inverse maximal curvature becomes zero, can only be determined tc
significant digits from the data in Fig. 4. The next section presents an alternative apprc
used to obtain more precise information about the singularity.

4.2. Evolution of Fourier Spectrum

Following previous work, the singularity formation is studied through the analytic col
tinuation ofz(«, t) = x(e, t) + iy (e, t) into the complex-plane, wheré = o +i8. The
idea is to show that(&, t) has a singularity at a poigt in the complex plane, of the form

C(t) (£ — & ()", (4.2)
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wherego(t) = ac(t) +in(t) andu(t) = p(t) +iv(t). If &(t) hits the real axis in finite time,
thatis,n(t) — 0 ast — t¢, then this establishes the formation of a branch point singularit
of orderp(t;) inthe vortex sheet. The values®ft), & (t), anduw(t) are typically determined
from the asymptotic behaviour of the Fourier coefficientz@f, t) [2, 8, 17, 22, 25-28,
30].

In the present case(a, t) = z(—«, t) due to the symmetry of the vortex sheets, where
the overline denotes the complex conjugate and the sheets are extended, o] by
symmetry. This implies that(¢, t) = z(—£, t), and that ifz has a singularity &, of the
form (4.2), it also has a symmetric singularityﬂai_0 of the form

C)E™ ™ (€ + & (1) . (4.3)

The singularities a§, and—&, lie both either in the lower compléxplane, or in the upper
complexé-plane. The asymptotic behaviour of the Fourier coefficients

N
1 .
Go=ox D e, ne (4.4)
j=—N+1

follows from results in Carrieet al.[10], (section, 6.2) and is given by

A .
Ck & we*’7k sin(kae + vInk + ¢), (4.5a)
C_y ~ ie*”ksin(koz +vink + ¢) (4.5b)
K N kil c .

ask — oo. Equation (4.8) is satisfied if there are two singularities in the lower half plane
at+a; —in,n > 0. Equation (4.B) is satisfied if there are two singularities in the upper half
plane, atta. + in. If (4.5) holds, the coefficients oscillate, with an envelope that decay
exponentially ify > 0 and algebraically if = 0. Pugh [25] investigated both the behaviour
of ¢ andc_ to demonstrate singularity formation in a planar Boussinesq bubble by showi
thatn(t) — 0 ast — t.. Rottman and Stansby [27] used a similar approach for the initiall
cylindrical vortex sheet studied here and obtained an estimate for the critical time. Nie ¢
Baker [22] investigated the behaviour of the Fourier coefficients for the initially spheric
vortex sheet. This section compares the planar and axisymmetric vortex sheet evolutio
comparing the behaviour of the respective Fourier coefficients.

Figure 5 plots the absolute coefficiemtg| at a sequence of increasing times, compute
with N = 400,I = 20, for the planar and axisymmetric case. The coefficients oscillate al
the upper envelope of the oscillations becomes closer to linear as time increases, indic:
the transition from exponential to algebraic decay and therefore)thatO in finite time.
The reference line drawn in the figure has slef5, which corresponds to a branch point
singularity withp = 3/2 andn = 0. It is, however, difficult to deduce the precise values of
p(tc) andt. from this figure.

To obtain more precise information, we follow previous work [2, 8, 22, 25, 26, 28] ar
determine the six parametets p, n, «, v, ¢ that satisfy (4.5) for consecutive coefficients
Ck—2, - - - » Cka3, fOr arange of values d&f. For each value d{, the resulting nonlinear system
is solved using netlib’s iterative solvesos[21]. The initial iterate is either the result for
the previous value o, or it is obtained by the following procedure. Set+ 1 = 0 and
use a linear least squares fit of the local maximedb obtainy and I(A), and seb = 0
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FIG. 5. Fourier coefficientycy| vs. k, computed withN = 400, | = 20. (a) Planart =1, 2, 2.3, 2.33.
(b) Axisymmetrict = 1, 2, 2.14, 2.185. The coefficients increase with increasing time.

and use a linear least squares fit of the zeroes of the oscillation to @btaid«,. This
initialization was necessary for the first valuekaiised, as well as in a few cases when the
initialization based on the previous valuekaoflid not lead to converged results. Remaining
outliers were removed by a three-point median filter. The value®\fop, n, o, v, ¢
obtained in this way are functions kfWe are interested in the asymptotic regime in whict
(4.5) holds and these functions are close to constant.

Following Pugh [25] we investigate the behaviour of the coefficieptandc_g of the
function z(«, t). As mentioned earlieg, andc_g give information about singularities in
the lower and upper half of the compléxplane, respectively. We will see below that the
coefficientsc, that we can resolve are far from the asymptotic regime in which (4.5) hol
and do not give precise information about the corresponding singularities. However,
observed that if one shifts the index and consid&rs- ¢« », these shifted coefficients
approach their asymptotic regime faster. Notice that

N
~ 1 — i —ikaj

Ck:m E e M z(aj, t)e ", (4.6)
J=—N+1

and therefor@, are the Fourier coefficients @, t) = e 4%z(a, t). SinceZ(«, t) has the
same singularities aga, t), the behaviour o€y gives information about the singularities
of z.

Figures 6 (planar) and 7 (axisymmetric) plot the parameters ande. obtained forcy,
C_k, andty at a sequence of increasing times (see caption), for two different resolutioas,
200,1 = 17 (dashed lines) and = 400,l = 20 (solid lines). The remaining parameters
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FIG. 6. Planar case. Parametens p, «. in approximation (4.5) obtained from (&, (b) c, and
(c) ¢, computed withN = 200, | = 17 (dashed) andN = 400, | = 20 (solid). The data are shown &=
2.24,2.26,2.28,2.30, 2.32, 2.33. The values ofy, o, decrease and the values pfincrease with increasing
time.

Y - A N N E | | T A N T N B T TR N NN R N B
2.0

o]
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1.0
0.722

0.7187

FIG. 7. Axisymmetric case. Parameters, p, o, in approximation (4.5) obtained from (ag,
(b) c_«, and (c)c;, computed withN = 200,I = 17 (dashed) antll = 400, = 20 (solid). The data are shown at
t =210, 2.12, 2.14, 2.16, 2.18, 2.185. The values,af. decrease and the valuespfncrease with increasing
time.
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A, v, and¢ are not shown, since not much information is gained from them. The valu
of pin the figure increase in time, while the values)cdinda decrease in time. We first
discuss the results fay in column (a) of Figs. 6 and 7 and then address the results for
andcy in columns (b) and (c).

Consider the results fagx in Figs. 6(a) and 7(a). The values fgr p, anda. appear to
have converged ilN andl for k < 40 and we focus on these converged values. The valu
indicate the presence of a singularity in the lower comglgane which appears to hit the
real axis since appears to approach zero. Note that the planar and axisymmetric values
n, p are almostidentical. Bothand p are, however, far from being constankirindicating
thatk is not in the asymptotic regime in which (4.5) holds. Thus, a singularity appears
occur in both the planar and the axisymmetric case, but the precise vatuer &f cannot
be determined from these results. On the other hand, the valugghadt give the position
of the singularity can be determined quite accurately since they are almost constant |
Fork > 25, ac 2q =~ 0.7487 with variations of less than 0.1%, and 34 ~ 0.7217 with
variations of less than 2%.

The value ofy 34 is slightly smaller thar, »4. This is related to differences in the appear-
ance of the planar and axisymmetric spectra plotted in Fig. 5. Notice that the oscillation:
|ck| in Fig. 5(a) appear more regular than the ones in Fig. 5(b). The oscillations are sam|
at ka¢ plus a phaseshift. In the planar casg~ 0.757, which means thatko.)modr
repeats itself after every fourth point. Thus every fourth point lies at the same phase
the oscillations, giving much regularity to the plot. In the axisymmetric egse 0.727.

It takes a much larger value &ffor (kac)modr to approximately repeat itself, and this
accounts for the apparent irregularity in the plot.

The results in Figs. 6(a) and 7(a) are similar to the results reported by Pugh [25]
the planar Boussinesq bubble and by Nie and Baker [22] for the initially spherical vort
sheet. More precise information about the singularity could be obtained by including hig
order terms in the asymptotic behaviour (4.5§0fShelley [28] implemented such a higher
order approximation for a periodically perturbed flat vortex sheet. In that problem, t
Fourier coefficients are monotonically decreasing snd not oscillatory. As a result, six
parameters determine the asymptotic behaviour of the coefficients to higher order tha
the present case. Instead of introducing even more parameters here, we choose to gain
information by investigating the behaviour afy andc,.

Figures 6(b, c) and 7(b, c) plot the parametgrp, o obtained forc_yx andty. Based on
our comments above, these values relate to singularitie&of) in the upper and lower
complexé-plane, respectively. Surprisingly, these values are much closer to being cons
in k than the values fog, in Figs. 6(a) and 7(a). Thus, x and& appear to exhibit the
asymptotic behaviour (4.5) more closely, and provide more reliable information about
singularity. The reason for this remains unclear. Notice again that the axisymmetric res
in Fig. 7(b,c) are almost identical to the planar ones in Fig. 6(b,c). We now use the res
obtained front_y andg to gain information about the singularity.

To determine the critical time of singularity formation, Fig. 8 plots the valug at
k = 40 for a sequence of times, using the resultsdar (circles) and¢ (crosses). The
value atk = 40 was taken to be representative of the range in whitas converged and is
constant irk. The figure shows thatdecreases and reaches zero at the same time, whetl
it is obtained frormc_y or from €. Thusz(¢, t) contains singularities in both the upper and
the lower complex-plane that hit the real axis at the same critical time. This tig)és
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FIG. 8. Value of n at k =40, vs. time, using the results from Figs. 6(b, c¢) and 7(b, c). (a) Plana
(b) Axisymmetric.

closely approximated by
teod = 2.330, te3d = 2.185 (4.7)

The planar estimate is lower than the valué.cE 2.36 given by Rottman and Stansby [27].
This is attributed to the fact that they did not investigate convergericarid used nonuni-
form values ofy obtained fromc. There are no previous estimates for the axisymmetri
critical time.

Notice thatthe values afft) in Fig. 8 are almostlinear in both the planar and axisymmetri
cases. The slope in the planar case is approximately 0.70, while the axisymmetric sloy
approximately 0.78. Thus, the axisymmetric singularity approaches the real axis sligt
faster.

The values ofp in Figs. 6(b) and 7(b), corresponding to a singularity in the upper ha
plane, increase from 1.5 towards 1.6 as t increases. At any fixed time, however, the va
decrease slightly ik, and are consistent with an asymptotic value 4%.3The values op
in Figs. 6(c) and 7(c), corresponding to a singularity in the lower half plane, increase fr
1.4to 1.5 as tincreases, and are also consistent with an asymptotic val(# of 3

Based on the results presented in Figs. 6 and 7, we conclude that in both the pl:
and axisymmetric case(¢, t) has singularities that hit the axis at a critical titgeThe
formation timet. and the singularity positioh = «. are clearly determined by the Fourier
spectrum. The singularity type is consistent with Moore’s branch point singularity of ord
3/2 but cannot be pinpointed more precisely since the high wavenumber modes in
asymptotic regime are not well resolved. We can, however, conclude based on the simil
of the two figures that the planar and axisymmetric singularity appear to be of the sa
type.

One would like to know whether a moderate increas&liandl is sufficient to more
precisely identify the singularity type. Figure 9 plojsand p in the planar case for a
higher resolution run usiny = 800, = 25, and quadruple machine precision. The ax-
isymmetric simulation with these parameters was not performed since it requires too m
computing time. Figure 9 shows an improvement over the results in Fig 6. The values
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- (a) - (b) - (c)

FIG. 9. Planar case. Parametersp in approximation (4.5) for (ayx, (b) c_«, and (c)c,, computed with
N = 400,I = 25. The data one shown for= 2.24, 2.26, 2.28, 2.30, 2.32, 2.33.

n appear to have reached their asymptotic regime, and they confirm the singularity
mation timet. »q = 2.330 found previously. The values @, however, particularly the
ones in column (a), remain far from their asymptotic regime. We infer that to more pl
cisely determine the ordgr of the singularity using the asymptotic expression (4.5) it i
necessary to resolve many more Fourier modes. This requires larger values of N at
which in turn requires arithmetic precision much greater than quadruple machine precis
Further evidence for this is given in the next section. An example of such high accur:
computations is given by Caflisch, Ercolani, and Steele [8] who studied singularities in
steady Boussinesq equations using a multiprecision package with 128 and 200 digit
precision.

4.3. Solution att = t;

The results in the previous section were used to establish the critical timgof singu-
larity formation. Figure 10 plots the vortex sheet strength at that e, t.), computed
with N = 400 and = 14, 17, 20. The planar data are shown on the left, the axisymmetr
data on the right. The bottom figures show a close-up of the top figuresxnear.. At
t = 0, the sheet strength is(«, 0) = coq«). The figure shows that in time;(«, t) has
developed a cusp at = . The sheet strength increasesl ascreases, but the relative
variations of the cusp withare small. The planar and axisymmetric cusp in the close-uy
are similar.

Figure 11 plots the curvature at the critical timéy, t.), computed with the same values
of N andl as in Fig. 10. The curvature is positive fer< a., negative forx > «¢, and is
large ate = a. The maximum curvature increases somewhatisincreased. The planar
and axisymmetric curvature in Fig. 11(a,b) have noticeable differences awayfrdiat
the behaviour near. shown in the close-up is quite similar. Notice that small oscillation:
are visible for the largest value bshown in the close-up. These oscillations occur whel
the number of point® is not large enough to resolve the curvature. They represent a ty
of Gibbs phenomenon that occurs when a high order scheme is used to resolve near sin
behaviour. These small oscillations, especially the ones to the right afe the same in
the planar and the axisymmetric case, even though one method is formally exponent
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FIG. 10. Vortex sheet strengifi(e, t.) at the critical time, computed witN = 400 and = 14, 17, 20. (a,b)
Planar. (c,d) Axisymmetric. The bottom figure are close-ups of the top ones near the singularity. The maxin
sheet strength increasesl ascreases.

accurate while the other one is formaf/(h®). We conclude that at the current resolution,
there is no visible difference between the exponentially accurate method and the fifth ol
method. Both methods lose accuracy near the singularity.

Figure 11 clearly shows that the solutiontat t. is far from being resolved. In the
previous section it was claimed that tat t., a singularity occurs at which the curva-
ture becomes unbounded, yet in Fig. 11 the maximum curvature is only around 7.
same conclusion can be drawn from Fig. 4. In that figure, the maximal curvature ¢
pears to become unbounded in time, but it certainly does not appear to become unbou
att = tc.

In order to better determine the dependence of the data on the parafetedks, Fig. 12
plots the maximum vortex sheet strength and the maximum curvattiee &, for various
values of N = 200 400 800 andl = 14, 17, 20, 25. Both the planar case (+—) and
the axisymmetric one (o- -) are shown. The computations with= 20 andl = 25 are
only computed withN > 400 andN > 800, respectively, in order to avoid the oscillations
whose beginning could be seen in Fig. 11(c,d). The axisymmetric case is not computec
N = 800 and > 17, for which quadruple precision is required.

The maximum vortex sheet strength,(tc), shown in Fig. 12(a), changes very littlelds
andl are varied, indicating that it has almost converged, and that the limit s> oo is a
finite cusp as seen in Fig. 10. This is consistent with a branch point singularity of gler 3
On the other hand, the maximum curvaturg(t;), shown in Fig. 12(b), increasesdsand
| are increased, indicating that it has not converged and could possibly become unbout
in the limit N, | — oco. Note that the unboundedness can only be capturbdahd| are
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FIG.11. Curvaturec(a, t;) atthe critical time, computed with = 400 and = 14, 17, 20. (a,b) Planar. (c,d)
Axisymmetric. The bottom figures are close-ups of the top ones near the singularity. The maximum curva
increases alsincreases.
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FIG. 12. (a) Maximum vortex sheet strength and (b) maximum curvature at the critical time, for varyir
values ofN andl. Planar case (——) and axisymmetric case (—+ o). The values oN are indicated on the
axis; the values dfincrease with increasing valuesf.x andonmax, as indicated in Part (b).
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increased simultaneously. For fixed filter paramkttite maximum curvature changes little
asN — oo and converges towards a finite value. Thus the filter has a smoothing effe
not visible at early times but nonnegligible near the singularity. The effect of the filt
has also been addressed by Shelley [28]. For fixed Vluthe filter parameter cannot
be increased arbitrarily since otherwise oscillations appear. Thushbatid! have to be
increased simultaneously, in agreement with convergence results by Caflisch, Hou,
Lowengrub [9].

Figure 12(b) furthermore shows that the maximum curvature increases sloilaid
I, indicating very low order convergence. Even with= 800 and = 25, the maximum
curvature is only around 9. Thus, in order to resolve the singularity and observe the expe
blowup inkate), | needs to be increased significantly, requiring machine precision mu
below quadruple precision, in agreement with the conclusion at the end of the previ
section.

5. SUMMARY

The evolution of an initially cylindrical and an initially spherical vortex sheet were
investigated numerically. Based on previous numerical and analytical results it is expec
that in the planar case, a branch point singularity of org& &ccurs. The goal of the
present paper is to gain information about singularity formation in an axisymmetric sh
by comparison with the planar flow. The main results are summarized as follows:

(1) Strong evidence of finite time singularity formation in both the planar and the a
isymmetric case is given by (i) the large and sudden increase in the maximal curva
shown in Fig. 4, and (ii) the Fourier spectrum of the evolving sheets, which shows thg
singularity in the complex plane hits the real axis in finite time. The singularity formatic
timet, and positionx. are accurately determined from the Fourier spectrum.

(2) The planar and axisymmetric singularity type appear to be identical, based on c
parison of the Fourier spectrum, the vortex sheet strength and the curvature at the cri
time. Some differences between the two flows are observed at a larger scale, for exat
in the vortex sheet shape and in the curvature away from the singularity.

(3) The computations indicate that the order of the branch point singularity is consist
with 3/2, although it cannot be pinpointed precisely. As is evident from Figs. 4, 10, 11, a
12, the computed solution near the critical time is not well resolved. The results show t
to better resolve the flow it is necessary to reduce the filter level significantly, well belc
guadruple machine precision, and to increase the valdesimultaneously. The difficulty
in resolving the flow is independent of whether the flow is planar or axisymmetric.
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