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The evolutions of the planar and axisymmetric vortex sheets generated by the
impulsive motion of a cylinder and a sphere, respectively, are compared numerically.
The numerical method addresses difficulties that occur in the axisymmetric case
near the axis of symmetry. The planar vortex sheet is known to develop a branch
point singularity in finite time. Comparison of the planar and axisymmetric solutions
indicates that the axisymmetric sheet develops a branch point singularity as well, and
that it is of the same orderp as the planar singularity. The value ofp is consistent
with 3/2. c© 2001 Academic Press

Key Words:vortex sheet; singularity formation; axisymmetric vortex sheets.

1. INTRODUCTION

Consider a cylinder immersed in inviscid fluid which is given an impulse in a direction
normal to itself. The resulting potential flow is induced by a planar vortex sheet in place of
the cylinder. Similarly, the potential flow past an impulsively started sphere is induced by
an axisymmetric vortex sheet in place of the sphere. This paper studies the evolution of the
planar and axisymmetric vortex sheets under their self-induced velocity, as if the cylinder
and sphere were dissolved and the fluid within them allowed to move with the flow. There
is no surface tension present.

Planar vortex sheets with analytic initial conditions are known to lose their analyticity
in finite time. This was first shown by Moore [20] for a periodical perturbation of a flat
vortex sheet. Using approximate evolution equations for the Fourier coefficients, he found
that the vortex sheet coordinates, parametrized by the circulation0, develop a branch point
singularity proportional to03/2. The singularity formation was confirmed by Meiron, Baker,
and Orszag [19] using Taylor series expansions, and by Krasny [17] and Shelley [28] using
the point vortex approximation. A 3/2 branch point singularity was also found in planar
Boussinesq flow (Pugh [25]), and in Rayleigh Taylor flow (Baker, Caflisch and Siegel [2]).
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Recent analytical work suggests that Moore’s 3/2 singularity is generic for planar vortex
sheets (Caflischet al. [7], Cowley, Baker, and Tanveer [12]).

Much less is known about fully 3D or axisymmetric vortex sheets. Ishihara and Kaneda
[15, 16] and Brady and Pullin [6] considered certain 3D perturbations of a flat vortex sheet
and found analytical evidence of singularity formation based on Moore’s analysis [6, 15],
as well as numerical evidence [16]. For axisymmetric vortex sheets, the numerical results
of Pugh [25], Nitsche [23], and Nie and Baker [22] indicate the formation of a singularity.
Hu [14] recently showed at least formally that 3D and planar vortex sheets share the same
type of singularity. The goal of the present paper is to compare planar and axisymmetric
singularity formation numerically.

The numerical method used to compute the vortex sheet evolution is based on eval-
uating the singular integrals that represent the vortex sheet velocity. In the planar case,
these integrals are computed accurately with either van de Vooren’s [31] approximation
or the alternate point vortex approximation (Baker [1], Shelley [28]), as has previously
been done by Rottman and Stansby [27]. In the axisymmetric case, a complication occurs
that is not present in the planar case. For points near the axis of symmetry, the integrands
have large variations which make it difficult to evaluate the velocity accurately (Baker,
Meiron, and Orszag [3]). De Bernadinis and Moore [5] computed the axisymmetric ve-
locity using a third order accurate quadrature rule and showed that there is a large loss
of accuracy as the axis is approached, even though the vortex sheet is smooth. Nitsche
[24] showed that this loss of accuracy occurs for standard quadrature rules of arbitrar-
ily high order. At any given point on the vortex sheet, the discretization error converges
at the correct rate, but it does not converge uniformly. The maximum error is always of
size O(h), whereh is the mesh size. The difficulty is caused by the behaviour of co-
efficients multiplying the logarithmic terms in the axisymmetric integrands, as well as
derivatives at the endpoints. Their values are shown to become unbounded as the axis is
approached.

The loss of accuracy makes it difficult to resolve the axisymmetric singularity formation.
Pugh [25] reduced the size of the errors near the axis using asymptotic expansions of the
integrals, but found that for computationally feasible mesh sizes the error remained too large.
Nie and Baker [22] used local mesh refinement to more accurately evaluate the integrals.
For each integral, they introduced new mesh points, based on an interpolant of the vortex
sheet, and were able to sufficiently reduce the error near the axis.

Here we apply a method proposed by Nitsche [24] to address the difficulty in the axisym-
metric case. It is based on an analytical approximation of the integrand whose integral can
be accurately precomputed for all times. By subtracting the approximation, a quadrature
rule is obtained that converges uniformly over the vortex sheet at no additional cost, and
removes the loss of accuracy near the axis. This method has been used by Ceniceros and
Si [11] to resolve axisymmetric Darcian flow. Below, we describe a fifth order accurate
extension of the method. The axisymmetric simulations are then compared to the planar
ones. The main result is evidence that the planar and axisymmetric flows behave almost
identically near a critical time, indicating that the axisymmetric sheet develops a branch
point singularity as well and that it is of the same type as the planar one.

The paper is organized as follows. Section 2 presents the initial conditions and the gov-
erning equations. Section 3 describes the numerical method. It illustrates the differences
between the planar and the axisymmetric integrands responsible for the axisymmetric com-
plication and describes the quadrature rules used in each case. Section 4 presents the planar
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and axisymmetric simulations and compares the results. The results are summarized in
Section 5.

2. PROBLEM FORMULATION

2.1. Initial Conditions

Let (x, y, z) be a Cartesian coordinate system such that the initial cylinder and sphere
are centered at the origin and the z-axis is the axis of the cylinder (Fig. 1a, b). The initial
radius isa and the initial velocity inside the cylinder/sphere is(U, 0, 0). The initial velocity
outside the cylinder/sphere is determined by the stream function in the upperx–y plane,

ψ2d(r, θ) = a2U

r
sinθ , ψ3d(r, θ) = a3U

2r
sin2 θ , 0≤ θ ≤ π , r ≥ a (2.1)

(Batchelor [4], Sections 6.6, 6.8). Herer, θ are polar coordinates, and the subscripts 2d and
3d refer to the planar and axisymmetric case respectively.

The evolving vortex sheets are described by their cross section with the upperx–y plane
and by the circulation distribution. The cross section (Fig. 1c) is a curve(x(α, t), y(α, t))
parametrized by a Lagrangian parameterα. The circulation0(α) is given byd0/ds=
σ(s, t), wheres is arclength, andσ is the vortex sheet strength, that is, the jump in the
tangential velocity across the sheet. From (2.1) it follows that the initial velocity jump is

σ2d(s, 0) = 2U sinθ, σ3d(s, 0) = 3

2
U sinθ, s= aθ. (2.2)

We chooseα to equal the angleθ at time zero and0(α) to be the total circulation between
(x(α, t), y(α, t)) and the foremost point on the sheet,0(α) = ∫ s(α)

0 σ(s, 0) ds. The total
circulation in the upperx–y plane,0T = 0(π), is

0T,2d = 4Ua, 0T,3d = 3Ua. (2.3)

The flow is nondimensionalized with respect to the initial radiusa and the total circulation

FIG. 1. Sketch illustrating the coordinate system and initial vortex sheets (a, b) and their cross section with
the upperx–y plane (c).
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0T . With this choice, the initial vortex sheet is given by

x(α, 0) = cosα, y(α, 0) = sinα, 0(α) = (1− cosα)/2, 0≤ α ≤ π. (2.4)

The corresponding nondimensional initial velocity isU2d = 1/4 andU3d = 1/3.

2.2. Evolution Equation

The vortex sheets(x(α, t), y(α, t)) with circulation0(α) are a superposition of vortex
elements with strengthd0 = 0′(α) dα. These elements are counterrotating pairs of vortex
lines in the planar case, and circular vortex filaments in the axisymmetric case. The stream
function at(x, y) induced by an element at(x̃, ỹ) of unit strength is

ψ2d(x, y, x̃, ỹ) = − 1

4π
log

(x − x̃)2+ (y− ỹ)2

(x − x̃)2+ (y+ ỹ)2
, (2.5a)

ψ3d(x, y, x̃, ỹ) = yỹ

4π

2π∫
0

cosθ dθ

((x − x̃)2+ y2+ ỹ2− 2yỹ cosθ)1/2
. (2.5b)

The corresponding velocity at(x, y) induced by an element at(x̃, ỹ) is

(u2d, v2d) =
(
∂ψ2d

∂y
,−∂ψ2d

∂x

)
, (u3d, v3d) =

(
1

y

∂ψ3d

∂y
,−1

y

∂ψ3d

∂x

)
, (2.6)

and the total velocity induced by the vortex sheets is obtained by superposition,

(u, v)(x, y) =
π∫

0

� (u, v)(x, y, x(α, t), y(α, t))0′(α) dα. (2.7)

For points(x, y) on the vortex sheets, the integrals in (2.7) are singular and are evaluated in
the principal value sense, which effectively assigns to the sheets the average of the velocities
on either side of them. The sheets evolve under self-induction,

dx

dt
(α, t) = u(x(α, t), y(α, t)),

dy

dt
(α, t) = v(x(α, t), y(α, t)), (2.8)

with the given initial conditions (2.4).

3. NUMERICAL METHOD

The vortex sheets are discretized byN + 1 vortex elements at(xj , yj ) = (x(α j , t),
y(α j , t)), j = 0, . . . , N, corresponding to a uniform mesh inα, α j = jh, h = π/N. The
velocity of the j th element is

dxj

dt
=

π∫
0

� Gu(α, α j , t) dα,
dyj

dt
=

π∫
0

� Gv(α, α j , t) dα, (3.1)

whereGu, Gv are the integrands in (2.7) evaluated at(x, y) = (xj , yj ) (see [24] for the ax-
isymmetric case). The numerical method consists of approximating the integrals ofGu, Gv
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in (3.1) by a quadrature rule, integrating the resulting system of ordinary differential equa-
tions by the fourth order Runge–Kutta scheme, and applying a Fourier filter. The main
portion of this section discusses the quadrature rules to be used. It illustrates the difference
between the planar and the axisymmetric case, and describes the remedy for the difficulty
occuring in the axisymmetric one.

3.1. Planar vs Axisymmetric Case

The planar and axisymmetric integrandsG have expansions inα − α j of the form

G2d(α, α j , t) = G̃2d(α, α j , t)+ c−1,2d(α j , t)

α − α j
,

G3d(α, α j , t) = G̃3d(α, α j , t)+ c−1,3d(α j , t)

α − α j

+
∞∑

k=0

ck,3d(α j , t)(α − α j )
k log |α − α j |. (3.2)

HereG̃ is smooth as long as the vortex sheet is smooth. Sidi and Israeli [29] derive quadrature
rules based on a uniform mesh that integrate singular functions of the form (3.2) to arbitrary
accuracy. In the planar case, their simplest quadrature rule turns out to be exponentially
accurate, and equals the one used by van de Vooren [31]. In the axisymmetric case, we
will see that all of their quadrature rules lose accuracy whenα j is near the axis and have
maximum errors of sizeO(h), making it difficult to resolve the axisymmetric vortex sheet
motion. As explained below, the reason for the complication in the axisymmetric case is
not the presence of the additional logarithmic terms given in (3.2), but the behaviour of the
coefficientsck and of derivatives ofG on the axis, as a function ofα j .

The quadrature rules given by Sidi and Israeli [29] for integrals of the form (3.1), (3.2)
are

π∫
0

� G(α, α j , t) dα ≈ Q[G]h
[0,π ], (3.3)

where

Q[G]h
[0,π ] = h

∑
k 6= j

′
G(αk, α j , t)+ hG̃(α j , α j , t)+ c0(α j , t)h log

h

2π

+
2m∑
k=2

k even

νkck(α j , t)h
k+1+

2m+1∑
k=1

k odd

γk
[
G(k)(π, α j , t)−G(k)(0, α j , t)

]
hk+1. (3.4)

Herem≥ 0, with larger values ofm corresponding to higher order approximations. For
m= 0, it is implied that the fourth term in (3.4) is absent. The prime on the summation
indicates that the first and last summands are weighted by 1/2. The derivativesG(k) are taken
with respect to the variable of integrationα, and the constantsνk, γk are defined in terms
of the Riemann zeta function. The first term in (3.4) is the trapezoid rule approximation
of a principal value integral, as used in the point vortex approximation. The second term
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is the correction given by van de Vooren [31]. The third and fourth terms account for the
logarithmic terms in (3.2). The last term corresponds to the Euler–MacLaurin series for the
error in the trapezoid rule [13], Section 7.4). The approximation error is

E[G]h
[0,π ](α j , t) =

π∫
0

� G(α, α j , t) dα − Q[G]h
[0,π ] =

2n+2∑
k=2m+2
k even

νkck(α j , t)h
k+1

+
2n+3∑
k=2m+3
k odd

γk
[
G(k)(π, α j , t)− G(k)(0, α j , t)

]
hk+1+ O(h2n+5) (3.5)

for any integern ≥ m.
Consider the quadrature rule (3.4) withm= 0 and the associated approximation error

(3.5). In the planar case, the logarithmic terms are absent, sock,2d = 0 for k ≥ 0. One can
also show that the planar integrandsG2d have a smooth extension across the axis that is
even, so that all odd derivativesG(k)

2d vanish at the endpoints,α = 0, π . Thus, (3.5) shows
that in the planar case, the quadrature rule withm= 0 is exponentially accurate. This is
the approximation used by van de Vooren [31]. The alternate point vortex approximation
introduced by Baker [1] and used by Shelley [28] is another exponentially accurate approxi-
mation which is more efficient and eliminates the need to compute the value ofG̃(α j , α j , t).
For this paper we computed the planar flow using both of these methods and found that the
results from the two methods are indistinguishable.

Now consider the quadrature rule withm= 0 in the axisymmetric case. The axisymmetric
integrandG3d contains the logarithmic terms,ck,3d 6= 0 for all k ≥ 0. Furthermore, one can
show thatG3d has a smooth extension across the axis that is odd instead of even, and that all
odd derivativesG(k)

3d except for the first one are nonzero at the endpoints,α = 0, π . Thus,
(3.5) shows that in the axisymmetric case, the quadrature rule withm= 0 is O(h3). This
is the quadrature rule derived by de Bernadinis and Moore [5].

De Bernadinis and Moore [5], however, observed that their quadrature rule loses much
accuracy near the axis. It turns out that while the approximation error (3.5) converges at
the correct rate pointwise, it does not converge uniformly inα j , and that the maximum
error is O(h) instead ofO(h3). Nitsche [24] showed that the problem arises because the
coefficientsck,3d andG(k)

3d become unbounded asα j → 0,

cu
k,3d(α j , t) ∼ 1

αk
j

, cvk,3d(α j , t) ∼ 1

αk−1
j

, (3.6a)

G(k),u
3d (0, α j , t) ∼ 1

αk
j

, G(k),v
3d (0, α j , t) ∼ 1

αk−1
j

. (3.6b)

Similar behaviour occurs asα j → π . For a fixed mesh, (3.6) shows that the values ofck,3d

andG(k)
3d are largest whenj = 1, orα j = α1 = h, and

cu
k,3d(α1, t) ∼ 1

hk
, cvk,3d(α1, t) ∼ 1

hk−1
, (3.7a)

G(k),u
3d (0, α1, t) ∼ 1

hk
, G(k),v

3d (0, α1, t) ∼ 1

hk−1
. (3.7b)
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Substituting (3.7) into (3.5) thus shows that the maximum errors in the integration ofGu
3d

andGv
3d occur whenj = 1 and are of sizeO(h) andO(h2), respectively. This is true for any

value ofm. That is, no matter how accurate a quadrature rule (3.4) is used, the maximum
errors converge to first and second order only.

In summary, the fact that unlike the planar integrand, the axisymmetric one contains
logarithmic terms and is odd across the axis and not even, accounts for the fact that the
axisymmetric quadrature isO(h2m+3) and not exponentially accurate as the planar one.
This does not present a problem, sincem can be chosen to be as large as desired. The
complication in the axisymmetric case is due to the unboundedness given by (3.6), which
accounts for the fact that the maximum error is of sizeO(h), independently ofm.

3.2. Corrected Axisymmetric Quadrature Rule

Figure 2(a, b) illustrates the loss of accuracy of the axisymmetric quadrature rule (3.4)
with m= 1, which isO(h5). (Here, we need the valuesγ1 = −1/12,γ3 = 1/720, andν2 =
−0.06089691411678654156.) The figure plots the discretization error(eu, ev) in the initial
axisymmetric velocity

∫
� Gu

3d(α, α j , 0) dα,
∫
� Gv

3d(α, α j , 0) dα, computed withh = π/N
andN = 50, 100, 200, 400, 800. The figure shows that for fixedα j the error converges at
the correct rate, but that the approximation loses accuracy near the axis. As discussed, the
maximum errors occur at one gridpoint from the axis and decay asO(h) in Fig. 2(a), and
asO(h2) in Fig. 2(b). Note that the large loss of accuracy near the axis occurs even though
the vortex sheet is perfectly smooth there.

Figure 2(c) plots the magnitude of the Fourier coefficientsêk of the complex erroreu + iev.
Because of the large values ofeu, ev near the axis, the discretization error contains high
wavenumber modes of large amplitude. An analysis of the data indicates that the modes
ê±N decay asO(h2). In time, these high wavenumber modes grow due to the Kelvin–
Helmholtz instability of the vortex sheet. A Fourier filter (Krasny [17]), originally used to
control the growth of roundoff error, can be used to control the growth of the discretization
error. However, the level at which such a filter would have to be applied introduces global
O(h2)errors, which makes it prohibitively expensive to resolve the axisymmetric singularity
formation.

It is therefore not practical to use the quadrature rule (3.4) for the axisymmetric case.
Nie and Baker [22] addressed the problem using local mesh refinement to more accurately
compute the integrals describing the vortex sheet velocity. At each timestep, they use an
interpolant of the vortex sheet to introduce as many new quadrature points as needed so that
the discretization error is uniformly small. They also use a quadrature rule that integrates
logarithmic terms accurately, thereby minimizing the required number of inserted points.
The resulting approximation is as accurate as the interpolant, and the discretization error is
smooth.

Here, we take the approach developed by Nitsche [24], based on an analytical approxi-
mationB of the integrandG near the axis. The approximation is chosen such that

(i) B has a self-similar form that is essentially time independent, and
(ii) G− B does not have the problematic property (3.6) ofG.

As a result of (i), the integral ofB can be accurately precomputed. As a result of (ii),
the integration ofG− B does not lose accuracy near the axis. The method consists of
precomputing the integral ofB and integratingG− B instead ofG at each timestep, at no
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FIG. 2. Discretization error in the initial axisymmetric velocity at(xj , yj ), j = 0, . . . , N, computed with
N = 50, 100, 200, 400, 800. The left column shows the results using theO(h5) quadrature (3.4) withm= 1. The
right column shows the results using the corrected quadrature (3.12). (a,d) Absolute error|eu| vs.α j , (b,e) absolute
error|ev | vs.α j , (c,f) Fourier coefficients|êk| of the complex erroreu + iev vs.k.
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additional computational cost. In this paper we use anO(h5) version of the method, which is
an extension of the version presented in [24]. The description below is meant to summarize
the basic ideas and present a slightly simpler implementation than the one given in [24].

The method requires approximationsBle andBri of G near the left and right endpoints,
α, α j ≈ 0 andα, α j ≈ π . One can show that forα, α j ≈ 0,

Gu(α, α j , t) ≈ Bu,le(α, α j , t) = bu
0(t)B

u
0

(
α

α j

)
+ α2

j

3∑
k=1

bu
k(t)B

u
k

(
α

α j

)
+ O

(
α4, α4

j

)
,

Gv(α, α j , t) ≈ Bv,le(α, α j , t) = α j b
v
0(t)B

v
0

(
α

α j

)
+ α3

j

4∑
k=1

bvk(t)B
v
k

(
α

α j

)
+ O

(
α5, α5

j

)
,

(3.8)

with coefficientsbu,v
k and functionsBu,v

k as given in [24]. Note that since the functions
Bu,v

k are time independent, their integrals can be precomputed to desired accuracy. Thus we
numerically integrateG− Ble instead ofG, over some domain containing the lower bound
α = 0. It will be convenient to choose different upper bounds for the integration ofG and
of Ble. We approximate

π∫
0

� G dα =
π∫

0

� G dα −
α j L∫
0

��Ble dα +
α j L∫
0

��Ble dα ≈ Q[G]h
[0,π ] − Q[Ble]h

[0,α j L] +
α j L∫
0

�� Ble dα

= Q[G]h
[0,π ] + EQ[Ble]h

[0,α j L], (3.9)

whereQ is the fifth order approximation (3.4) withm= 1. The errorEQ[Ble]h
[0,α j L] is a

correction to the quadrature ruleQ. Here,L has to be large enough so that [0, α j L] includes
the interval where B approximates G well; we chooseL = 100. The upper boundα j L is
chosen so that the correction can be precomputed conveniently. By substituting (3.8) into

EQ[Ble]h
[0,α j L] =

α j L∫
0

�� Ble(α, α j , t) dα − Q[Ble]h
[0,α j L] (3.10)

and making the change of variablesη = α/α j ,1η = 1α/α j = 1/j , the correctionEQ[Ble]
can be rewritten as

EQ[Bu,le]h
[0,α j L] = α j b

u
0(t)EQ

[
Bu

0

]1/j

[0,L] + α3
j

3∑
k=1

bu
k(t)EQ

[
Bu

k

]1/j

[0,L] (3.11a)

EQ[Bv,le]h
[0,α j L] = α2

j b
v
0(t)EQ

[
Bv0
]1/j

[0,L] + α4
j

4∑
k=1

bvk(t)EQ
[
Bvk
]1/j

[0,L] . (3.11b)

In this form, the numbersEQ[Bk]1/j
[0,L] are independent ofh as well ast and can be con-

veniently precomputed for all mesh sizes to desired accuracy. Only the coefficientsbk,
which depend on derivatives ofx(α, t), y(α, t), and0(α) at the endpointα = 0, have to
be computed at each timestep. Equation (3.11) also shows that the maximum corrections
occur whenj = 1 and are of sizeO(h) andO(h2), respectively.
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The correctionsEQ[Ble]h
[0,α j L] in (3.9) remove the large errors of the quadratureQ near

the left endpoint,α j = 0. A similar correction can be found near the right endpoint,α j = π .
The globally uniformO(h5) approximation is

π∫
0

� G dα ≈ Q[G] + w1(α j )E[Ble]h
[0,α j L] + w2(α j )E[Bri ]h

[π−α j L ,π ], (3.12)

where the weightsw1 andw2 are positive, add up to one, vanish at one or the other end-
point sufficiently fast, and are smooth and periodic. We choosew1 = sin4(α j )/(sin4(α j )+
cos4(α j )) andw2 = cos4(α j )/(sin4(α j )+ cos4(α j )). Figures 2 (d, e) plot the error in the
initial velocity of the axisymmetric vortex sheet computed with the corrected quadrature
rule (3.12). As the figures show, the large errors near the axis have been removed, and the
error converges uniformly asO(h5).

This concludes the description of the corrected uniformlyO(h5) quadrature rule for the
axisymmetric case. A final comment relates to the Fourier filtering scheme used. Figure 2(f)
plots the magnitude of the Fourier coefficientsêk of the complex erroreu + iev. The high
wavenumber modes have significantly smaller magnitude than in Fig. 2(c), and can be
shown to decay asO(h6). However, the high modes of the discretization error have not
been eliminated and grow under the Kelvin–Helmholtz instability of the sheet. To prevent
the growth of these modes they are removed using Krasny’s Fourier filter: All modes in the
vortex sheet position below a given filter levelτ are set to zero at each timestep. The filter
level needs to be at least as large as the size of the high modes in the discretization error
in the velocity (Fig. 2f) times the timestep1t . The computations in the next section are
performed withN = 100, 200, 400 and 0.0002≤ 1t ≤ 0.005, allowing for filter levels as
small asτ = 10−l , with l = 20.

Notice that this is a difference between the current method and the one based on mesh
refinement described by Nie and Baker [22]. In their method, the error is forced to be
uniform across the axis and is thereby smooth, allowing for arbitrarily small filter levels. In
the present case, the filter levelτ is reduced by simultaneously increasingN. However, this
is not a problem since for convergence it is required thatN →∞andτ → 0 simultaneously
[9]. The accuracy of the current method is expected to be comparable to that of Nie and
Baker’s [22] method.

Machine precision is chosen so that it lies below the applied filter level. The computations
are performed withl = 14, 17, 20. The ones withl = 14 are performed in double machine
precision; the ones withl = 17, 20 are performed in quadruple machine precision. The
planar computations are performed with the same filter level as the axisymmetric ones.

4. NUMERICAL RESULTS

This section presents the computed results for the planar and axisymmetric vortex sheet
evolution. As discussed in the previous section, the planar results were computed with
both van de Vooren’s method [31] and the alternate point vortex approximation [28]. The
axisymmetric results were computed with the corrected quadrature rule (3.12).
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FIG. 3. Computed solution at the indicated times, usingN = 200,l = 14. (a) Planar. (b) Axisymmetric.

4.1. Evolution of Vortex Sheet and Curvature

Figure 3 plots the computed planar and axisymmetric vortex sheets(x(α, t), y(α, t)),
0≤ α ≤ π , at the indicated times, usingN = 200 and filter levelτ = 10−l with l = 14.
For clarity, the symmetric image corresponding to−π ≤ α ≤ 0 is also plotted. Each sheet
moves in the direction of the given impulse and changes shape. The front vorticity causes
vortex elements in the rear to decrease in radius, while the rear vorticity causes vortex
elements in the front to increase in radius. Since elements with smaller radii travel faster,
the rear elements move towards the front ones and the shape of the vortex sheets becomes
narrower. The self-induced velocities are larger in the axisymmetric case: The rear ap-
proaches the front faster, causing the axisymmetric sheet to become narrower than the planar
one.

The vortex sheet curvature in thex–y plane is defined as

κ(α, t) = xαyαα − xααyα(
x2
α + y2

α

)3/2 . (4.1)

Initially, κ(α, 0) = 1 for all α. As the sheet becomes narrower and the rear travels towards
the front, the curvature in the rear decreases and becomes negative shortly beforet = 2,
while it remains positive over the remainder of the sheet. At the point where the curvature
changes sign it soon blows up in magnitude. The maximal curvature increases to values
bigger than 1000 in a timeframe which is only a fraction of the total time evolution, giving a
strong indication of the formation of a finite time singularity. This is illustrated in Fig. 4(a),
which plots the inverse of the maximal curvatureκmax as a function of time. In both the
planar and the axisymmetric cases, the inverse maximal curvature decreases slowly until
approximatelyt = 2.30 (planar) andt = 2.16 (axisymmetric), when it suddenly decreases
rapidly and appears to approach zero in finite time. The transition from slow to rapid decrease
is sharper in the axisymmetric case. The cause for such a sharp transition region remains
unexplained.
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FIG. 4. Evolution of 1/κmax(t), whereκmax is the maximal curvature at timet . Parts (b,c) are close-ups of Part
(a). The solid lines are computed with fixedN = 400 and varyingl = 14, 17, 20; the dashed lines are computed
with fixed l = 14 and varyingN = 100, 200. BothN andl increase from right to left.

Figures 4(b, c) are close-ups of Fig. 4(a). The solid curves shown are computed with fixed
N = 400 and varyingl = 14, 17, 20. The dashed curves are computed with fixedl = 14
and varyingN = 100, 200. BothN andl increase from right to left, with the most resolved
result furthest to the left. The kinks in the curves are an artifact of the discretization caused
by the fact that the singularity does not occur at a grid point. The figures show that near the
apparent singularity formation, the computed solution has not converged in the parameters
N andl , and that both parameters need to be increased to better resolve the singularity and
gain information about it. For example, the critical time of singularity formation, given by
the time when the inverse maximal curvature becomes zero, can only be determined to two
significant digits from the data in Fig. 4. The next section presents an alternative approach
used to obtain more precise information about the singularity.

4.2. Evolution of Fourier Spectrum

Following previous work, the singularity formation is studied through the analytic con-
tinuation ofz(α, t) = x(α, t)+ iy(α, t) into the complexξ -plane, whereξ = α + iβ. The
idea is to show thatz(ξ, t) has a singularity at a pointξo in the complex plane, of the form

C(t)(ξ − ξo(t))
µ(t), (4.2)
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whereξo(t) = αc(t)+ iη(t)andµ(t) = p(t)+ i ν(t). If ξo(t)hits the real axis in finite time,
that is,n(t)→ 0 ast → tc, then this establishes the formation of a branch point singularity
of orderp(tc) in the vortex sheet. The values ofC(t),ξo(t), andµ(t)are typically determined
from the asymptotic behaviour of the Fourier coefficients ofz(ξ, t) [2, 8, 17, 22, 25–28,
30].

In the present case,z(α, t) = z(−α, t) due to the symmetry of the vortex sheets, where
the overline denotes the complex conjugate and the sheets are extended to [−π, π ] by
symmetry. This implies thatz(ξ, t) = z(−ξ̄ , t), and that ifz has a singularity atξo of the
form (4.2), it also has a symmetric singularity at−ξ̄o of the form

C̄(t)e−iπµ̄(ξ + ξ̄o(t))
µ̄(t). (4.3)

The singularities atξo and−ξo lie both either in the lower complexξ -plane, or in the upper
complexξ -plane. The asymptotic behaviour of the Fourier coefficients

ck = 1

2N

N∑
j=−N+1

z(α j , t)e
−ikα j (4.4)

follows from results in Carrieret al. [10], (section, 6.2) and is given by

ck ≈ A

kp+1
e−ηk sin(kαc + ν ln k+ φ), (4.5a)

c−k ≈ A

kp+1
e−ηksin(kαc + ν ln k+ φ) (4.5b)

ask→∞. Equation (4.5a) is satisfied if there are two singularities in the lower half plane,
at±αc − iη,η > 0. Equation (4.5b) is satisfied if there are two singularities in the upper half
plane, at±αc + iη. If (4.5) holds, the coefficients oscillate, with an envelope that decays
exponentially ifη > 0 and algebraically ifη = 0. Pugh [25] investigated both the behaviour
of ck andc−k to demonstrate singularity formation in a planar Boussinesq bubble by showing
thatη(t)→ 0 ast → tc. Rottman and Stansby [27] used a similar approach for the initially
cylindrical vortex sheet studied here and obtained an estimate for the critical time. Nie and
Baker [22] investigated the behaviour of the Fourier coefficients for the initially spherical
vortex sheet. This section compares the planar and axisymmetric vortex sheet evolution by
comparing the behaviour of the respective Fourier coefficients.

Figure 5 plots the absolute coefficients|ck| at a sequence of increasing times, computed
with N = 400,l = 20, for the planar and axisymmetric case. The coefficients oscillate and
the upper envelope of the oscillations becomes closer to linear as time increases, indicating
the transition from exponential to algebraic decay and therefore thatη→ 0 in finite time.
The reference line drawn in the figure has slope−2.5, which corresponds to a branch point
singularity withp = 3/2 andη = 0. It is, however, difficult to deduce the precise values of
p(tc) andtc from this figure.

To obtain more precise information, we follow previous work [2, 8, 22, 25, 26, 28] and
determine the six parametersA, p, η, αc, ν, φ that satisfy (4.5) for consecutive coefficients
ck−2, . . . , ck+3, for a range of values ofk. For each value ofk, the resulting nonlinear system
is solved using netlib’s iterative solverdsos[21]. The initial iterate is either the result for
the previous value ofk, or it is obtained by the following procedure. Setp+ 1= 0 and
use a linear least squares fit of the local maxima ofck to obtainη and ln(A), and setν = 0
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FIG. 5. Fourier coefficients|ck| vs. k, computed withN = 400, l = 20. (a) Planar,t = 1, 2, 2.3, 2.33.
(b) Axisymmetric,t = 1, 2, 2.14, 2.185. The coefficients increase with increasing time.

and use a linear least squares fit of the zeroes of the oscillation to obtainφ andαc. This
initialization was necessary for the first value ofk used, as well as in a few cases when the
initialization based on the previous value ofk did not lead to converged results. Remaining
outliers were removed by a three-point median filter. The values forA, p, η, αc, ν, φ
obtained in this way are functions ofk. We are interested in the asymptotic regime in which
(4.5) holds and these functions are close to constant.

Following Pugh [25] we investigate the behaviour of the coefficientsck andc−k of the
function z(α, t). As mentioned earlier,ck andc−k give information about singularities in
the lower and upper half of the complexξ -plane, respectively. We will see below that the
coefficientsck that we can resolve are far from the asymptotic regime in which (4.5) holds
and do not give precise information about the corresponding singularities. However, we
observed that if one shifts the index and considersc̃k = ck+2, these shifted coefficients
approach their asymptotic regime faster. Notice that

c̃k = 1

2N

N∑
J=−N+1

e−2iα j z(α j , t)e
−ikα j , (4.6)

and thereforẽck are the Fourier coefficients ofz̃(α, t) = e−2iαz(α, t). Sincez̃(α, t) has the
same singularities asz(α, t), the behaviour of̃ck gives information about the singularities
of z.

Figures 6 (planar) and 7 (axisymmetric) plot the parametersη, p, andαc obtained forck,
c−k, andc̃k at a sequence of increasing times (see caption), for two different resolutions,N =
200,l = 17 (dashed lines) andN = 400,l = 20 (solid lines). The remaining parameters
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FIG. 6. Planar case. Parametersη, p, αc in approximation (4.5) obtained from (a)ck, (b) c−k, and
(c) c′k, computed withN = 200, l = 17 (dashed) andN = 400, l = 20 (solid). The data are shown att =
2.24, 2.26, 2.28, 2.30, 2.32, 2.33. The values ofη, αc decrease and the values ofp increase with increasing
time.

FIG. 7. Axisymmetric case. Parametersη, p, αc in approximation (4.5) obtained from (a)ck,
(b) c−k, and (c)c′k, computed withN = 200,l = 17 (dashed) andN = 400,l = 20 (solid). The data are shown at
t = 2.10, 2.12, 2.14, 2.16, 2.18, 2.185. The values ofη, αc decrease and the values ofp increase with increasing
time.
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A, ν, andφ are not shown, since not much information is gained from them. The values
of p in the figure increase in time, while the values ofη andαc decrease in time. We first
discuss the results forck in column (a) of Figs. 6 and 7 and then address the results forc−k

andc̃k in columns (b) and (c).
Consider the results forck in Figs. 6(a) and 7(a). The values forη, p, andαc appear to

have converged inN andl for k ≤ 40 and we focus on these converged values. The values
indicate the presence of a singularity in the lower complexξ -plane which appears to hit the
real axis sinceη appears to approach zero. Note that the planar and axisymmetric values for
η, p are almost identical. Bothη andp are, however, far from being constant ink, indicating
thatk is not in the asymptotic regime in which (4.5) holds. Thus, a singularity appears to
occur in both the planar and the axisymmetric case, but the precise value ofp or tc cannot
be determined from these results. On the other hand, the values ofαc that give the position
of the singularity can be determined quite accurately since they are almost constant ink.
For k ≥ 25, αc,2d ≈ 0.748π with variations of less than 0.1%, andαc,3d ≈ 0.721π with
variations of less than 2%.

The value ofαc,3d is slightly smaller thanαc,2d. This is related to differences in the appear-
ance of the planar and axisymmetric spectra plotted in Fig. 5. Notice that the oscillations of
|ck| in Fig. 5(a) appear more regular than the ones in Fig. 5(b). The oscillations are sampled
at kαc plus a phaseshift. In the planar case,αc ≈ 0.75π , which means that(kαc)modπ
repeats itself after every fourth point. Thus every fourth point lies at the same phase in
the oscillations, giving much regularity to the plot. In the axisymmetric caseαc ≈ 0.72π .
It takes a much larger value ofk for (kαc)modπ to approximately repeat itself, and this
accounts for the apparent irregularity in the plot.

The results in Figs. 6(a) and 7(a) are similar to the results reported by Pugh [25] for
the planar Boussinesq bubble and by Nie and Baker [22] for the initially spherical vortex
sheet. More precise information about the singularity could be obtained by including higher
order terms in the asymptotic behaviour (4.5) ofck. Shelley [28] implemented such a higher
order approximation for a periodically perturbed flat vortex sheet. In that problem, the
Fourier coefficients are monotonically decreasing ink and not oscillatory. As a result, six
parameters determine the asymptotic behaviour of the coefficients to higher order than in
the present case. Instead of introducing even more parameters here, we choose to gain more
information by investigating the behaviour ofc−k andc′k.

Figures 6(b, c) and 7(b, c) plot the parametersη, p, αc obtained forc−k andc̃k. Based on
our comments above, these values relate to singularities ofz(ξ, t) in the upper and lower
complexξ -plane, respectively. Surprisingly, these values are much closer to being constant
in k than the values forck in Figs. 6(a) and 7(a). Thus,c−k and c̃k appear to exhibit the
asymptotic behaviour (4.5) more closely, and provide more reliable information about the
singularity. The reason for this remains unclear. Notice again that the axisymmetric results
in Fig. 7(b,c) are almost identical to the planar ones in Fig. 6(b,c). We now use the results
obtained fromc−k andc̃k to gain information about the singularity.

To determine the critical time of singularity formation, Fig. 8 plots the value ofη at
k = 40 for a sequence of times, using the results forc−k (circles) andc̃k (crosses). The
value atk = 40 was taken to be representative of the range in whichη has converged and is
constant ink. The figure shows thatη decreases and reaches zero at the same time, whether
it is obtained fromc−k or from c̃k. Thusz(ξ, t) contains singularities in both the upper and
the lower complexξ -plane that hit the real axis at the same critical time. This time,tc, is
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FIG. 8. Value of η at k = 40, vs. time, using the results from Figs. 6(b, c) and 7(b, c). (a) Planar.
(b) Axisymmetric.

closely approximated by

tc,2d = 2.330, tc,3d = 2.185. (4.7)

The planar estimate is lower than the value oftc = 2.36 given by Rottman and Stansby [27].
This is attributed to the fact that they did not investigate convergence inl and used nonuni-
form values ofη obtained fromck. There are no previous estimates for the axisymmetric
critical time.

Notice that the values ofη(t) in Fig. 8 are almost linear in both the planar and axisymmetric
cases. The slope in the planar case is approximately 0.70, while the axisymmetric slope is
approximately 0.78. Thus, the axisymmetric singularity approaches the real axis slightly
faster.

The values ofp in Figs. 6(b) and 7(b), corresponding to a singularity in the upper half
plane, increase from 1.5 towards 1.6 as t increases. At any fixed time, however, the values
decrease slightly ink, and are consistent with an asymptotic value of 3/2. The values ofp
in Figs. 6(c) and 7(c), corresponding to a singularity in the lower half plane, increase from
1.4 to 1.5 as t increases, and are also consistent with an asymptotic value of 3/2.

Based on the results presented in Figs. 6 and 7, we conclude that in both the planar
and axisymmetric case,z(ξ, t) has singularities that hit the axis at a critical timetc. The
formation timetc and the singularity positionξ = αc are clearly determined by the Fourier
spectrum. The singularity type is consistent with Moore’s branch point singularity of order
3/2 but cannot be pinpointed more precisely since the high wavenumber modes in the
asymptotic regime are not well resolved. We can, however, conclude based on the similarity
of the two figures that the planar and axisymmetric singularity appear to be of the same
type.

One would like to know whether a moderate increase inN and l is sufficient to more
precisely identify the singularity type. Figure 9 plotsη and p in the planar case for a
higher resolution run usingN = 800, l = 25, and quadruple machine precision. The ax-
isymmetric simulation with these parameters was not performed since it requires too much
computing time. Figure 9 shows an improvement over the results in Fig 6. The values of
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FIG. 9. Planar case. Parametersη, p in approximation (4.5) for (a)ck, (b) c−k, and (c)c′k, computed with
N = 400,l = 25. The data one shown fort = 2.24, 2.26, 2.28, 2.30, 2.32, 2.33.

η appear to have reached their asymptotic regime, and they confirm the singularity for-
mation timetc,2d = 2.330 found previously. The values ofp, however, particularly the
ones in column (a), remain far from their asymptotic regime. We infer that to more pre-
cisely determine the orderp of the singularity using the asymptotic expression (4.5) it is
necessary to resolve many more Fourier modes. This requires larger values of N and l,
which in turn requires arithmetic precision much greater than quadruple machine precision.
Further evidence for this is given in the next section. An example of such high accuracy
computations is given by Caflisch, Ercolani, and Steele [8] who studied singularities in the
steady Boussinesq equations using a multiprecision package with 128 and 200 digits of
precision.

4.3. Solution att = tc

The results in the previous section were used to establish the critical timet = tc of singu-
larity formation. Figure 10 plots the vortex sheet strength at that time,σ(α, tc), computed
with N = 400 andl = 14, 17, 20. The planar data are shown on the left, the axisymmetric
data on the right. The bottom figures show a close-up of the top figures nearα = αc. At
t = 0, the sheet strength isσ(α, 0) = cos(α). The figure shows that in time,σ(α, t) has
developed a cusp atα = αc. The sheet strength increases asl increases, but the relative
variations of the cusp withl are small. The planar and axisymmetric cusp in the close-ups
are similar.

Figure 11 plots the curvature at the critical time,κ(α, tc), computed with the same values
of N andl as in Fig. 10. The curvature is positive forα < αc, negative forα > αc, and is
large atα = αc. The maximum curvature increases somewhat asl is increased. The planar
and axisymmetric curvature in Fig. 11(a,b) have noticeable differences away fromαc, but
the behaviour nearαc shown in the close-up is quite similar. Notice that small oscillations
are visible for the largest value ofl shown in the close-up. These oscillations occur when
the number of pointsN is not large enough to resolve the curvature. They represent a type
of Gibbs phenomenon that occurs when a high order scheme is used to resolve near singular
behaviour. These small oscillations, especially the ones to the right ofαc, are the same in
the planar and the axisymmetric case, even though one method is formally exponentially



226 MONIKA NITSCHE

FIG. 10. Vortex sheet strengthσ(α, tc) at the critical time, computed withN = 400 andl = 14, 17, 20. (a,b)
Planar. (c,d) Axisymmetric. The bottom figure are close-ups of the top ones near the singularity. The maximum
sheet strength increases asl increases.

accurate while the other one is formallyO(h5). We conclude that at the current resolution,
there is no visible difference between the exponentially accurate method and the fifth order
method. Both methods lose accuracy near the singularity.

Figure 11 clearly shows that the solution att = tc is far from being resolved. In the
previous section it was claimed that att = tc, a singularity occurs at which the curva-
ture becomes unbounded, yet in Fig. 11 the maximum curvature is only around 7. The
same conclusion can be drawn from Fig. 4. In that figure, the maximal curvature ap-
pears to become unbounded in time, but it certainly does not appear to become unbounded
at t = tc.

In order to better determine the dependence of the data on the parametersN andl , Fig. 12
plots the maximum vortex sheet strength and the maximum curvature att = tc, for various
values ofN = 200, 400, 800 andl = 14, 17, 20, 25. Both the planar case (—+—) and
the axisymmetric one (- -s- -) are shown. The computations withl = 20 andl = 25 are
only computed withN ≥ 400 andN ≥ 800, respectively, in order to avoid the oscillations
whose beginning could be seen in Fig. 11(c,d). The axisymmetric case is not computed for
N = 800 andl ≥ 17, for which quadruple precision is required.

The maximum vortex sheet strengthσmax(tc), shown in Fig. 12(a), changes very little asN
andl are varied, indicating that it has almost converged, and that the limit asN, l →∞ is a
finite cusp as seen in Fig. 10. This is consistent with a branch point singularity of order 3/2.
On the other hand, the maximum curvatureκmax(tc), shown in Fig. 12(b), increases asN and
l are increased, indicating that it has not converged and could possibly become unbounded
in the limit N, l →∞. Note that the unboundedness can only be captured ifN andl are



SINGULARITY FORMATION 227

FIG. 11. Curvatureκ(α, tc) at the critical time, computed withN = 400 andl = 14, 17, 20. (a,b) Planar. (c,d)
Axisymmetric. The bottom figures are close-ups of the top ones near the singularity. The maximum curvature
increases asl increases.

FIG. 12. (a) Maximum vortex sheet strength and (b) maximum curvature at the critical time, for varying
values ofN andl . Planar case (——,+) and axisymmetric case (– – –, s). The values ofN are indicated on the
axis; the values ofl increase with increasing values ofκmax andσmax, as indicated in Part (b).
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increased simultaneously. For fixed filter parameterl , the maximum curvature changes little
as N →∞ and converges towards a finite value. Thus the filter has a smoothing effect,
not visible at early times but nonnegligible near the singularity. The effect of the filter
has also been addressed by Shelley [28]. For fixed valueN, the filter parameterl cannot
be increased arbitrarily since otherwise oscillations appear. Thus bothN andl have to be
increased simultaneously, in agreement with convergence results by Caflisch, Hou, and
Lowengrub [9].

Figure 12(b) furthermore shows that the maximum curvature increases slowly inN and
l , indicating very low order convergence. Even withN = 800 andl = 25, the maximum
curvature is only around 9. Thus, in order to resolve the singularity and observe the expected
blowup inκmax(tc), l needs to be increased significantly, requiring machine precision much
below quadruple precision, in agreement with the conclusion at the end of the previous
section.

5. SUMMARY

The evolution of an initially cylindrical and an initially spherical vortex sheet were
investigated numerically. Based on previous numerical and analytical results it is expected
that in the planar case, a branch point singularity of order 3/2 occurs. The goal of the
present paper is to gain information about singularity formation in an axisymmetric sheet
by comparison with the planar flow. The main results are summarized as follows:

(1) Strong evidence of finite time singularity formation in both the planar and the ax-
isymmetric case is given by (i) the large and sudden increase in the maximal curvature
shown in Fig. 4, and (ii) the Fourier spectrum of the evolving sheets, which shows that a
singularity in the complex plane hits the real axis in finite time. The singularity formation
time tc and positionαc are accurately determined from the Fourier spectrum.

(2) The planar and axisymmetric singularity type appear to be identical, based on com-
parison of the Fourier spectrum, the vortex sheet strength and the curvature at the critical
time. Some differences between the two flows are observed at a larger scale, for example
in the vortex sheet shape and in the curvature away from the singularity.

(3) The computations indicate that the order of the branch point singularity is consistent
with 3/2, although it cannot be pinpointed precisely. As is evident from Figs. 4, 10, 11, and
12, the computed solution near the critical time is not well resolved. The results show that
to better resolve the flow it is necessary to reduce the filter level significantly, well below
quadruple machine precision, and to increase the value ofN simultaneously. The difficulty
in resolving the flow is independent of whether the flow is planar or axisymmetric.
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